9 research outputs found

    The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing

    Get PDF
    A multi-country outbreak ofListeria monocytogenesST6 linked to blanched frozen vegetables (bfV)took place in the EU (2015–2018). Evidence of food-borne outbreaks shows thatL. monocytogenesisthe most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV,for the elderly (65–74 years old) population, is up to 3,600 times greater than cooked bfV and verylikely lower than any of the evaluated ready-to-eat food categories. The main factors affectingcontamination and growth ofL. monocytogenesin bfV during processing are the hygiene of the rawmaterials and process water; the hygienic conditions of the food processing environment (FPE); andthe time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling).Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations usedfor thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of thepossible control options suggests that application of a complete HACCP plan is either not possible orwould not further enhance food safety. Instead, specific prerequisite programmes (PRP) andoperational PRP activities should be applied such as cleaning and disinfection of the FPE, water control,t/T control and product information and consumer awareness. The occurrence of low levels ofL. monocytogenesat the end of the production process (e.g.<10 CFU/g) would be compatible with thelimit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed(i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C),L. monocytogeneslevels need to be considerably lower (not detected in 25 g). Routine monitoring programmes forL. monocytogenesshould be designed following a risk-based approach and regularly revised based ontrend analysis, being FPE monitoring a key activity in the frozen vegetable industry

    Guidance on date marking and related food information: part 1 (date marking)

    Get PDF
    A risk‐based approach was developed to be followed by food business operators (FBO) when deciding on the type of date marking (i.e. ‘best before’ date or ‘use by’ date), setting of shelf‐life (i.e. time) and the related information on the label to ensure food safety. The decision on the type of date marking needs to be taken on a product‐by‐product basis, considering the relevant hazards, product characteristics, processing and storage conditions. The hazard identification is food product‐specific and should consider pathogenic microorganisms capable of growing in prepacked temperature‐controlled foods under reasonably foreseeable conditions. The intrinsic (e.g. pH and aw), extrinsic (e.g. temperature and gas atmosphere) and implicit (e.g. interactions with competing background microbiota) factors of the food determine which pathogenic and spoilage microorganisms can grow in the food during storage until consumption. A decision tree was developed to assist FBOs in deciding the type of date marking for a certain food product. When setting the shelf‐life, the FBO needs to consider reasonably foreseeable conditions of distribution, storage and use of the food. Key steps of a case‐by‐case procedure to determine and validate the shelf‐life period are: (i) identification of the relevant pathogenic/spoilage microorganism and its initial level, (ii) characterisation of the factors of the food affecting the growth behaviour and (iii) assessment of the growth behaviour of the pathogenic/spoilage microorganism in the food product during storage until consumption. Due to the variability between food products and consumer habits, it was not appropriate to present indicative time limits for food donated or marketed past the ‘best before’ date. Recommendations were provided relating to training activities and support, using ‘reasonably foreseeable conditions’, collecting time–temperature data during distribution, retail and domestic storage of foods and developing Appropriate Levels of Protection and/or Food Safety Objectives for food–pathogen combinations.info:eu-repo/semantics/publishedVersio

    The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing

    Get PDF
    A multi‐country outbreak of Listeria monocytogenes ST6 linked to blanched frozen vegetables (bfV) took place in the EU (2015–2018). Evidence of food‐borne outbreaks shows that L. monocytogenes is the most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV, for the elderly (65–74 years old) population, is up to 3,600 times greater than cooked bfV and very likely lower than any of the evaluated ready‐to‐eat food categories. The main factors affecting contamination and growth of L. monocytogenes in bfV during processing are the hygiene of the raw materials and process water; the hygienic conditions of the food processing environment (FPE); and the time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling). Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations used for thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of the possible control options suggests that application of a complete HACCP plan is either not possible or would not further enhance food safety. Instead, specific prerequisite programmes (PRP) and operational PRP activities should be applied such as cleaning and disinfection of the FPE, water control, t/T control and product information and consumer awareness. The occurrence of low levels of L. monocytogenes at the end of the production process (e.g. < 10 CFU/g) would be compatible with the limit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed (i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C), L. monocytogenes levels need to be considerably lower (not detected in 25 g). Routine monitoring programmes for L. monocytogenes should be designed following a risk‐based approach and regularly revised based on trend analysis, being FPE monitoring a key activity in the frozen vegetable industry.info:eu-repo/semantics/publishedVersio

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Guidance on date marking and related food information: part 1 (date marking)

    Get PDF
    A risk-based approach was developed to be followed by food business operators (FBO) when deciding on the type of date marking (i.e. 'best before' date or 'use by' date), setting of shelf-life (i.e. time) and the related information on the label to ensure food safety. The decision on the type of date marking needs to be taken on a product-by-product basis, considering the relevant hazards, product characteristics, processing and storage conditions. The hazard identification is food product-specific and should consider pathogenic microorganisms capable of growing in prepacked temperature-controlled foods under reasonably foreseeable conditions. The intrinsic (e.g. pH and a(w)), extrinsic (e.g. temperature and gas atmosphere) and implicit (e.g. interactions with competing background microbiota) factors of the food determine which pathogenic and spoilage microorganisms can grow in the food during storage until consumption. A decision tree was developed to assist FBOs in deciding the type of date marking for a certain food product. When setting the shelf-life, the FBO needs to consider reasonably foreseeable conditions of distribution, storage and use of the food. Key steps of a case-by-case procedure to determine and validate the shelf-life period are: (i) identification of the relevant pathogenic/spoilage microorganism and its initial level, (ii) characterisation of the factors of the food affecting the growth behaviour and (iii) assessment of the growth behaviour of the pathogenic/spoilage microorganism in the food product during storage until consumption. Due to the variability between food products and consumer habits, it was not appropriate to present indicative time limits for food donated or marketed past the 'best before' date. Recommendations were provided relating to training activities and support, using 'reasonably foreseeable conditions' collecting time-temperature data during distribution, retail and domestic storage of foods and developing Appropriate Levels of Protection and/or Food Safety Objectives for food-pathogen combinations. (C) 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority
    corecore